

8° WORKSHOP IN EMATOLOGIA TRASLAZIONALE DELLA SOCIETÀ ITALIANA DI EMATOLOGIA SPERIMENTALE Firenze - Auditorium CTO - A.O.U. Careggi, 22-23 giugno 2023

Expression profiling of extramedullary acute myeloid leukemia suggests involvement of epithelial-mesenchymal transition pathways

Giorgia Silvestrini, PhD Candidate in Immunology, Molecular Medicine and Applied Biotechnology

Department of Biomedicine and Prevention, University of Rome "Tor Vergata"

I have no conflicts of interest to disclose

Extramedullary Acute Myeloid Leukemia (EM-AML)

EM-AML, defined "myeloid sarcoma" (MS) in the WHO classification, is an extramedullary mass of myeloid blasts with or without maturation that affect the tissue architecture.¹⁻³

complication of AML, reported in about 10% of cases

The exact mechanisms underlying the development of MS are unclear

Ild be newly diagnosed, with or without bone marrow

Most commonly involved sites are the skin, lymph nodes and the nervous system

be also manifestation of disease relapse after or post-allogenic hematopoietic cell

¹Shallis RM, Gale RP, Lazarus HM, et al. Myeloid sarcoma, chloroma, or extramedullary acute myeloid leukemia tumor: A tale of misnomers, controversy and the unresolved. Blood Rev. 2021;47:100773. ²Kahali B, Kahali B. Myeloid Sarcoma: The Other Side of Acute Leukemia. Hematol. - Latest Res. Clin. Adv. 2018

³Loscocco GG, Vannucchi AM, Myeloid sarcoma: more and less than a distinct entity. Ann Hematol. 2023 Jun 7.

8° WORKSHOP IN EMATOLOGIA TRASLAZIONALE DELLA SOCIETÀ ITALIANA DI EMATOLOGIA SPERIMENTALE

~

Study Aims

		UPN	N Gender Age (yrs) EM-localization features			Bone-marrow features at the time of EM-localization				
Cohorts	Retrospective				Tissue	AML phase	Blasts %	Karyotype	Mutated genes*	Immunophenotype
		UPN1	м	56	Skin	Relapse	95	del7q	FLT3-TKD	CD45+, MPO+, CD13+, CD33+, CD34+, CD38+, CD177+, HLA-DR-
		UPN2	F	53	Lymph node	Relapse	8	del(12)(p13)	NPM1	CD45+, CD117+, CD34+, CD13+, HLA-DR-, CD33+, CD15-
		UPN3	F	47	Skin	Relapse	73	Normal Karyotype	NPM1, FLT3-ITD	CD45+, CD33+, CD14+, CD64+, CD13+, HLA-DR+, CD4+, CD56+, MPO+, TDT+
		UPN4	м	55	Bone	Diagnosis	<5	Normal Karyotype	None	CD45+, MPO+, CD33+, CD64+, CD15+, HLA-DR+, CD34+, CD117+, CD4+/-, CD7+/-, CD13-
		UPN5	М	71	Lymph node	Diagnosis	20	50, XY, +2, +5, +8 [X4]	NPM1	CD45+, CD33+, CD64+, CD13+, HLA-DR+, CD56+, CD34-, CD117-, CD3-, CD7-
		UPN6	М	60	Skin	Diagnosis	<5	t(8;13)(p11;q12)	None	CD45+, MPO+, CD34+, CD117+, CD13+, CD15+, CD33+, CD56+/-
		UPN7	М	72	Skin	Relapse	46	48, XY, 2+mar[10], XY[5]	None	CD45+, CD34+/-, CD33+, CD117+, CD64+, HLA-DR+, CD4+, CD56+, CD13-
		UPN8	М	71	Skin	Relapse	48	Normal Karyotype	IDH1	CD45+, CD34+, CD33+, CD117+, CD13+, HLA-DR+, CD4+, CD15-, CD56-
		UPN9	F	75	Bone	Relapse	18	47, XX, +8	None	CD45+, CD34+, CD33+, CD117+, CD13+, HLA-DR3+, MPO+
	spective	UPN14	М	69	Bone	Diagnosis	87	Normal Karyotype	NPM1, FLT3-ITD, IDH2	CD45+, CD33+, CD117+, CD13+, CD4+, CD56-, CD64-
		UPN15	М	72	Lymph node	Relapse	12	Normal Karyotype	None	N.A.
	Pro	UPN16	F	74	Skin	Relapse	57	46XY,del(1)(q42),del(2)(q31),del(7)(q22), t(8:21(q22;q22)der(11)t(11:?),+15	RUNX1/RUNX1T1, IDH1	CD45+, CD33+, CD34+, HLA-DR+, CD13+, CD117-, CD15-

Clinical and biological features of AML study cohort

*including RUNX1/RUNX1T1, CBFB/MYH11, BCR/ABL1, DEK/NUP214, NPM1, FLT3 (ITD/TKD)

Expression profiling by RNA-Seq: differential gene expression analysis

HiSeq

Expression profiling by RNA-Seq: differential gene expression analysis

Expression profiling by RNA-Seq: KEGG pathway enrichment analysis

*The pathways are sorted alphabetically by pathway name.

DAVID: P-value < 0.01 and FDR < 0.01 GSEA: P-value < 0.01 and FDR < 0.25 |log2FC|>2

qRT-PCR validation of dysregulated genes confirms their upregulation in EM sites

Genes

 Δ Ct = Ct test gene – Ct housekeeping gene; Housekeeping gene = B2M

ECM-receptor interaction and Focal adhesion pathways may cooperate to induce extramedullary colonization of leukemic blasts

TWIST1 is significantly upregulated both in the retrospective and prospective cohort of patients complicated by an extramedullary localization

Fold Change = $2^{-\Delta\Delta Ct}$; $2^{-\Delta\Delta Ct}$ = $2^{-(\Delta Ct EM-AML - \Delta Ct BM)}$; ΔCt = Ct test gene – Ct housekeeping gene; Housekeeping gene = B2M

Modulation of the metastasis-promoting gene TWIST1 by siRNA

*For the invasion assay, the chamber was coated with Geltrex[™] matrix, to mimic the extracellular matrix.

Data are presented as the median with range of three independent experiments N\$: Rotadignifi0a08

In vitro metformin treatment affects expression of *TWIST1* and other EMT-related genes

In vitro metformin treatment affects expression of *TWIST1* and other EMT-related genes

The black bar represents the negative control, while the bars with increasing intensity of blue represent the scaling up doses of metformin.

Data are presented as the median with range of three independent experiments *: *P*-value < 0.05; NS: not significant

Metformin treatment impairs both migration and invasion

*For the invasion assay, the chamber was coated with GeltrexTM matrix, to mimic the extracellular matrix.

Wilcoxon matched-pairs test Data are presented as the median with range of three independent experiments

Conclusions

The expression profile of extramedullary localizations is significantly different from that of paired bone marrow samples

The invasion and metastatization pathways are enriched in extramedullary localizations

In vitro treatment of OCI-AML3 cells with metformin reduces the invasion and migration potential of AML cells

8° WORKSHOP IN EMATOLOGIA TRASLAZIONALE DELLA SOCIETÀ ITALIANA DI EMATOLOGIA SPERIMENTALE

Acknowledgments

Special thanks to

Prof. Maria Teresa Voso

Tiziana Ottone, PhD

The **Oncohematology laboratory** of the University of Rome "Tor Vergata"

Serena Travaglini Carmelo Gurnari Anna Maria Nardozza Emiliano Fabiani Enrico Attardi Luca Guarnera Mariadomenica Divona Paola Ricci Maria Antonietta Irno Consalvo